Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ling Huang* and Ding-Ben Chen

Department of Chemistry, Taizhou University, Taizhou 317000, People's Republic of China

Correspondence e-mail:
huangItzu@yahoo.com, huangItzu@163.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.032$
$w R$ factor $=0.078$
Data-to-parameter ratio $=13.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4-\{[(1E)-(3,5-Dibromo-2-hydroxyphenyl)methylene]-amino\}-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one

The crystal structure of the title compound, $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$, shows a strong intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond $[\mathrm{N} \cdots \mathrm{O}=2.609(4) \AA, \mathrm{O}-\mathrm{H}=0.90 \AA, \mathrm{H} \cdots \mathrm{N}=1.80 \AA$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}=148^{\circ}$], which leads to the existence of a phenolimine tautomer.

Comment

The Schiff bases derived from salicylaldehyde have been much studied because of their properties, such as tautomeric (Salman et al., 1991), fluorescent (Morishige et al., 1980), and thermo- and photochromic properties (Barbara et al., 1980; Cohen et al., 1964). In a search for new analytical reagents, we have synthesized some compounds of substituted salicylaldehyde with 4 -aminoantipyrine. We report here the synthesis and crystal structure of the title compound, (I).

(I)

All bond distances and angles are normal and agree with the corresponding values found in a similar compound 4-[(2-hydroxy-3-methoxybenzylidene)amino]-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one (Diao et al., 2005). There is an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond (Table 2); the compound is, therefore, in the phenol-imine form, as in 4-\{[(1Z)-2-hydroxyphenyl)methylene]amino\}-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one [N1 $\cdots \mathrm{O} 1=$ 2.607 (3) $\AA, \mathrm{O} 1-\mathrm{H} 1=0.97$ (3) $\AA, \mathrm{H} 1 \cdots \mathrm{~N} 1=1.71$ (3) \AA and $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 1=153(2)^{\circ}$; Hökelek et al., 2001].

Experimental

3,5-Dibromosalicylaldehyde was synthesized according to the published method (Brewsler, 1924). Ethanol solutions of 3,5dibromosalicylaldehyde ($10 \mathrm{mmol}, 2.80 \mathrm{~g}$) and 4-aminoantipyrine $(10 \mathrm{mmol}, 2.03 \mathrm{~g})$ were mixed and refluxed on a water bath for 5 h . The precipitate was filtered off and recrystallized from methanol (yield 81%, m.p. $501-502 \mathrm{~K}$). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $v_{\text {max }} 3410.5,1659.6$, 1591.2, 1446.5, 1363.6, 1290.3, 1135.0, 765.7. ${ }^{1} \mathrm{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 14.42(1 \mathrm{H}), 9.71(1 \mathrm{H}), 7.22-7.72(7 \mathrm{H}), 3.21(3 \mathrm{H}), 2.42(3 \mathrm{H})$.

Received 27 October 2005 Accepted 11 November 2005 Online 19 November 2005

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$
$M_{r}=465.15$
Monoclinic, $P 2_{1} / n$
$a=7.092$ (5) \AA
$b=8.231(5) \AA$
$c=30.487$ (2) \AA
$\beta=91.725(12)^{\circ}$
$V=1779(2) \AA^{3}$
$Z=4$
$D_{x}=1.737 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3452 reflections
$\theta=2.6-25.3^{\circ}$
$\mu=4.57 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, orange
$0.24 \times 0.19 \times 0.12 \mathrm{~mm}$

Data collection

Siemens SMART CCD area detector diffractometer ω and φ scans
Absorption correction: multi-scan
(SADABS; Bruker 2002)
$T_{\min }=0.367, T_{\max }=0.578$
9143 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.078$
$S=1.03$
3224 reflections
239 parameters
H atoms treated by a mixture of independent and constrained refinement

Figure 1
The structure of (I), showing 30\% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
The packing of (I), viewed down the a axis. Dashed lines indicate hydrogen bonds.
2002); program(s) used to solve structure: $S H E L X T L$; program(s) used to refine structure: $S H E L X T L$; molecular graphics: $S H E L X T L$; software used to prepare material for publication: SHELXTL.

The authors thank the Taizhou University for research grant No. 05QN12.

References

Barbara, P. F., Rentzepis, P. M. \& Brus, L. E. (1980). J. Am. Chem. Soc. 102, 2786-2791.
Brewsler, C. M. (1924). J. Am. Chem. Soc. 46, 2464-2468.
Bruker (2002). SMART (Version 5.62), SAINT (Version 6.02), SADABS (Version 2.03) and SHELXTL. Bruker AXS Inc., Madison, Winsonsin, USA.
Cohen, M. D., Schmidt, G. M. J. \& Flavin, S. (1964). J. Chem. Soc. pp. 20412051.

Diao, C.-H., Fan, Z. \& Yu, M. (2005). Acta Cryst. E61, o3271-o3272.
Hökelek, T., Işiklan, M. \& Kılıç, Z. (2001). Acta Cryst. C57, 117-119.
Morishige, K. (1980). Anal. Chim. Acta, 121, 301-308.
Salman, S. R., Farrant, R. D. \& Lindon, J. C. (1991). Spectrosc. Lett. 24, 10711078.

